IEE 6736 Analog ICs (II) 期末考试 — 6/9/2003

Name:

Student ID Number:

注意事項:
- 不作弊，也不幫助他人作弊。否則須受任何懲罰。
- 可以帶兩張 A4 紙之筆記。不可以在書或其他筆記。
- 試卷總共有 5 頁。請馬上檢查！
- 考題總共有 4 項。總分是 100 分。
- 考試時間有 100 分鐘。
- 可以用中文或英文作答。答案請寫清楚。
- 答案直接寫在試卷上。試卷背頁也可以寫。如果寫在背頁，請在正頁註明，以免被漏看。
- $G = 10^9, M = 10^6, k = 10^3, m = 10^{-3}, \mu = 10^{-6}, n = 10^{-9}, p = 10^{-12}, f = 10^{-15}$.

<table>
<thead>
<tr>
<th>考題</th>
<th>滿分</th>
<th>得分</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>總分</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. 20 Points
Consider the G_m-C filter shown below. Assume the transconductors are ideal, and $C_A = 2$ pF.

a. [10 pts] Find the transfer function $H(s) = V_o(s)/V_i(s)$ in terms of G_{m1}, G_{m2}, C_x, and C_A.

b. [10 pts] Find G_{m1}, G_{m2}, and C_x, so that the filter has a dc gain of 1, a pole at -50 MHz, and a zero at -100 MHz.
2. 30 Points
Consider the switched-capacitor filter shown below. Assume both opamp and switched are ideal, and clock frequency \(f_s = 1 \text{ MHz} \). Want to use this switched-capacitor circuit to approximate a s-domain first-order low-pass filter with a pole at \(-100 \text{ kHz}\), a zero at \(-200 \text{ kHz}\), and a dc gain of \(-2\).

a. [15 pts] Find the corresponding z-domain transfer function using bilinear transformation and prewarping.

b. [15 pts] Find the values for \(C_1 \), \(C_2 \), and \(C_3 \). Assume \(C_A = 10 \text{ pF} \).
3. 20 Points
Consider the charge-redistribution DAC shown below. The opamp and the analog switches are ideal, and \(V_R = 1 \) V. The digital input is

\[
D_i = b_2 \times 2^2 + b_1 \times 2^1 + b_0 \times 2^0 \quad b_j \in \{0, 1\} \quad j = 0, 1, 2
\]

a. [8 pts] Sketch the input \(D_i \) to output \(V_o \) transfer function.

b. [5 pts] Sketch the differential nonlinearity (DNL) of the DAC. Assume only \(C_1, C_2, \) and \(C_3 \) are different from their nominal values.

c. [7 pts] Sketch the integral nonlinearity (INL) of the DAC. Let INL = 0 at \(D_i = 0 \) and \(D_i = 7 \).
4. 30 Points
Consider a pipelined ADC consisting of two radix-2 1.5 bit pipeline stages. The characteristic of the pipeline stage is shown below when $G_j = 2$. The input V_1 can vary between -0.5 V and $+0.5$ V. The output D_o is calculated by

$$D_o = 2 \times D_1 + D_2$$

a. [15 pts] Sketch the V_1 input to D_o output transfer function, assuming ideal pipeline stage with $G_1 = 2.0$.

b. [15 pts] Sketch the V_1 input to D_o output transfer function, assuming ideal pipeline stage but with $G_1 = 2.5$.