ESD Protection Design With Extra Low-Leakage-Current Diode String for RF Circuits in SiGe BiCMOS Process

Ming-Dou Ker, Senior Member, IEEE, Yuan-Wen Hsiao, Student Member, IEEE, and Woei-Lin Wu

Nanoelectronics and Gigascale Systems Laboratory
Institute of Electronics, National Chiao-Tung University
1001 Ta-Hsueh Road, Hsinchu, Taiwan
TEL: (+886)-3-5131573, FAX: (+886)-3-5715412, e-mail: mdker@ieee.org

Abstract

Two, low-leakage, resistor-shunted diode strings are developed for use as power clamps in SiGe BiCMOS technology. The resistors are used to bias the deep N-wells, significantly reducing the leakage current from the diode string. A methodology for selecting the values of the bias resistors is presented. For further reduction of leakage current, an alternate design is presented, the resistor-shunted trigger bipolar power clamp. The power clamp circuits presented herein may be used in cooperation with small double-diodes at the I/O pins to achieve whole-chip ESD protection for RF ICs in SiGe processes.

Keywords: Electrostatic discharge (ESD), power-rail ESD clamp circuit, resistor-shunted diode string (RS diode string), modified resistor-shunted diode string (MR diode string), resistor-shunted trigger bipolar ESD power clamp, modified resistor-shunted trigger bipolar ESD power clamp.

Copyright (c) 2006 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

* This work was supported by National Science Council (NSC), Taiwan, under Contract of NSC95-2221-E-009-290.
I. INTRODUCTION

The Silicon-Germanium (SiGe) BiCMOS technology with great RF performance of SiGe HBT has been recognized as one of the best technology solutions for wireless applications. Electrostatic discharge (ESD) protection [1], [2], which has been a very important reliability issue in IC production, should be taken into consideration during circuit design and chip layout. In order to protect internal circuits from ESD damage, the power-rail ESD clamp circuit needs to be designed with the ESD diodes at I/O pins to achieve whole-chip ESD protection [3]. Fig. 1 shows the typical on-chip RF ESD protection scheme in which the ESD diodes at I/O pins are co-designed with the power-rail ESD clamp circuit [4]-[6]. ESD stress may have positive or negative voltages on an input or output pin with respect to the grounded VDD or VSS pins. For comprehensive ESD verification, the pin-to-pin ESD stress and VDD-to-VSS ESD stress had also been specified to verify the whole-chip ESD robustness. Thus, the ESD clamp circuit between the power rails is very helpful for protecting RF I/O pins and RF core circuits against ESD damage [6]. Diode string is one solution that has been applied in the power-rail ESD clamp circuits [7], [8], which is operated in forward-biased condition to discharge ESD current. Therefore, it can sustain a very high ESD level in a small silicon area.

However, the main drawback for using diode string as power-rail ESD clamp circuit is leakage current, especially at high temperatures. A parasitic vertical PNP bipolar transistor (BJT) exists in the conventional P+/N-well diode with the common grounded P-type substrate. This parasitic vertical PNP bipolar transistor causes high leakage current along the diode string [7]-[9], especially at high temperatures. Some modified designs on the diode string to reduce leakage current had been reported in [8], which are referred to as the Cladded diode string, Boosted diode string, and Cantilever diode string. However, those designs, which have been verified in a bulk CMOS technology, still have high leakage current (~mA) at the temperature of 125 °C [9]. In SiGe processes, deep trench (DT) has been used to reduce substrate leakage current of diode string [10], [11]. With the DT and N+ buried layer in SiGe process, the parasitic vertical open-base PNP bipolar transistor can be formed in the diode string because the N+ buried layer is floating [11]. As a result, the substrate leakage current is lower than that of the conventional P+/N-well diode string in CMOS processes.

Although Fig. 1 is applicable not only to RF circuits, this work focuses on power-rail ESD clamp circuit design in SiGe BiCMOS process, which is always dedicated to RF applications. The importance of effective power-rail ESD clamp circuits for RF ESD protection design in SiGe BiCMOS processes
has been demonstrated in [1], [2], [12], [13]. Moreover, the study on diode strings used in power-rail ESD clamp circuits with reduced leakage current has been reported for RF ESD protection applications [10], [11]. With the effective power-rail ESD clamp circuits, the sizes of ESD protection devices at the RF input node can be further reduced without sacrificing ESD robustness. Therefore, the impact of ESD protection circuit on RF performance can be minimized. However, the main concern on the effective power-rail ESD clamp circuits designed with diode strings is the leakage issue in circuit normal operations, especially under a high temperature environment.

In this work, four power-rail ESD clamp circuits for RF ESD protection design in SiGe BiCMOS technology are proposed, which are the resistor-shunted diode string (RS diode string), resistor-shunted trigger bipolar ESD power clamp [14], modified resistor-shunted diode string (MR diode string), and modified resistor-shunted trigger bipolar ESD power clamp. In the new proposed resistor-shunted diode string and modified resistor-shunted diode string, extra biases are applied to the deep N-well regions of the resistor-shunted diode string and modified resistor-shunted diode string to reduce leakage current. The characteristics of these new proposed power-rail ESD clamp circuits are also compared with those of the conventional diode string in a 0.18-μm SiGe BiCMOS process.

II. REVIEW ON DIODE STRINGS

A. Conventional Diode String in CMOS Technology

The cross-sectional view of the conventional four-stage diode string is shown in Fig. 2. Because of the parasitic vertical PNP bipolar transistors in the forward-biased diodes, holes are injected from the P+ emitter into the N-well base and a part of holes are swept to the P-substrate collector. Consequently, the substrate leakage current in the conventional diode string is formed. If the current gain of the parasitic vertical PNP bipolar transistor is greater than unity, the total blocking voltage across the diode string can not be linearly increased by increasing the number of stacked diodes in the diode string. This implies that more diodes would be needed to provide the desired blocking voltage. To reduce leakage current of the conventional diode string, three modified designs had been reported in [7], [8].
B. Modified Diode String to Reduce Leakage Current

A modified design to reduce leakage current by using triple-well technologies had been reported in [10]. Fig. 3 shows the cross-sectional view of the four-stage diode string with its parasitic base-emitter tied PNP bipolar transistors in a triple-well CMOS process. The base-emitter junction can not be forward-biased because the base and emitter are tied together. As a result, holes will not be injected into the base region of the parasitic vertical PNP bipolar transistor and the current will flow through the P-well region to the next diode. Thus, the base-emitter tied configuration can effectively suppress the substrate leakage current. The substrate leakage current can be kept very small before the triple-well diode string is turned on.

III. NEW PROPOSED RESISTOR-SHUNTED DIODE STRING AND RESISTOR-SHUNTED TRIGGER BIPOLAR ESD POWER CLAMP

A. Resistor-Shunted Diode String

The cross-sectional view of the new proposed resistor-shunted diode string (RS diode string) in a SiGe BiCMOS process is shown in Fig. 4. Compared with the conventional P+/N-well diode string, the new proposed resistor-shunted diode string uses deep N-wells to isolate the P-wells from the common grounded P-substrate. An extra bias through the resistor R is applied through the N-well to the deep N-well to reduce leakage current into substrate. The structure and equivalent circuit of the resistor-shunted diode string with its parasitic NPN bipolar transistors is shown in Fig. 5.

In the new proposed resistor-shunted diode string, each deep N-well is connected to the anode through a bias resistance R. The connection of deep N-wells to the anode causes the parasitic NPN bipolar transistors in the resistor-shunted diode string to be slightly turned on. The current generated from the slightly turned-on NPN bipolar transistor in the diode will flow into the next diode in the resistor-shunted diode string rather than into the common grounded P-substrate. Therefore, the leakage current into substrate is not increased in this new design.

When the resistor-shunted diode string is used as the power-rail ESD clamp circuit, the anode is connected to VDD and the cathode is grounded. The total current flowing into the resistor-shunted diode string should equal to that flowing out from the resistor-shunted diode string. The total leakage current of the resistor-shunted diode string is
where all currents have been indicated in Fig. 5. Under normal circuit operating conditions, the resistor-shunted diode string was designed so as to minimize its leakage current. In the new proposed resistor-shunted diode string, the parasitic BJT1 was designed to be operated in the saturation mode while the parasitic BJT2, BJT3, and BJT4 were designed to be operated in the forward-active mode under normal circuit operating conditions. The emitter current \(I_E \) and collector current \(I_C \) of each bipolar transistor can be expressed in terms of its base-emitter voltage \(V_{BE} \) and base-collector voltage \(V_{BC} \) as

\[
I_E = \frac{I_S}{\alpha_F} \left(e^{\frac{V_{BE}}{\alpha_F} V_T} - 1 \right) - I_S \left(e^{\frac{V_{BE}}{\alpha_F} V_T} - 1 \right), \quad \text{and}
\]

\[
I_C = I_S \left(e^{\frac{V_{BE}}{\alpha_F} V_T} - 1 \right) - \frac{I_S}{\alpha_R} \left(e^{\frac{V_{BE}}{\alpha_F} V_T} - 1 \right).
\]

The base-collector voltage \(V_{BC} \) of BJT1, base-emitter voltage \(V_{BE} \) of each bipolar transistor, and \(VDD \) are derived as

\[
V_{BC1} = R \times I_1,
\]

\[
V_{BE_n} = V_T \left[\ln \left(I_{En} + 1 \right) - \ln \left(I_S \right) \right], \quad \text{for } n = 1 \sim 4, \quad \text{and}
\]

\[
V_{DD} = \sum_{n=1}^{4} V_T \left[\ln \left(I_{En} + 1 \right) - \ln \left(I_S \right) \right],
\]

where \(I_S \) is the saturation current, \(V_T \) is the thermal voltage, \(\alpha_F \) is the common base current gain in the forward-active mode, \(\alpha_R \) is the common base current gain in the reverse-active mode, and \(I_E \) and \(I_C \) are the emitter and collector current, respectively \[15\]. According to equations (4)-(6), the emitter and collector currents of BJT1 becomes

\[
I_{E1} = \left(\frac{I_S}{\alpha_F} \right) \left[\left(\frac{I_{E1} + 1}{I_S} \right) - 1 \right] - I_S \left(e^{\frac{R_{E1}}{V_T}} - 1 \right), \quad \text{and}
\]

\[
I_{C1} = I_S \left[\left(\frac{I_{E1} + 1}{I_S} \right) - 1 \right] - \frac{I_S}{\alpha_R} \left(e^{\frac{R_{E1}}{V_T}} - 1 \right).
\]

It is straightforward that
\[I_{E1} = \frac{\left(\frac{1}{\alpha_F} - I_S\right)}{\left(1 - \frac{1}{\alpha_F}\right)} - I_S \left(e^{\frac{RI_{E1}}{V_T}} - 1\right). \]

(9)

From the equivalent circuit, the collector current of BJT2 has current gain relationship with the emitter current of BJT1 since the emitter current of BJT1 is the base current of BJT2, and BJT2 is in the forward-active mode. Therefore, \(I_{C2} \) is given by

\[I_{C2} = \beta_2 I_{B2} = \beta_2 I_{E1}, \]

where \(\beta_2 \) is the common emitter current gain of BJT2. Similarly, the collector currents of the BJT3 and BJT4 are

\[I_{C3} = \beta_3 I_{B3} = \beta_2 \beta_3 I_{E1}, \]

and

\[I_{C4} = \beta_4 I_{B4} = \beta_2 \beta_3 \beta_4 I_{E1}, \]

(11)

(12)

where \(\beta_3 \) and \(\beta_4 \) are the common emitter current gain of BJT3 and BJT4, respectively. The current flows through the bias resistance \(R \) is the sum of the four collector currents, which can be derived as

\[I_1 = I_{C1} + I_{C2} + I_{C3} + I_{C4} = I_{C1} + (\beta_2 + \beta_2 \beta_3 + \beta_2 \beta_3 \beta_4) I_{E1}. \]

(13)

Therefore, the total leakage current of the resistor-shunted diode string becomes

\[I_{\text{total leakage}} = (1 + \beta_2 + \beta_2 \beta_3 + \beta_2 \beta_3 \beta_4) I_{E1} \]

\[= \left(1 + \beta_2 + \beta_2 \beta_3 + \beta_2 \beta_3 \beta_4\right) \frac{\left(1 - I_S\right)}{\left(1 - \frac{1}{\alpha_F}\right)} - I_S \left(e^{\frac{RI_{E1}}{V_T}} - 1\right) \]

\[= f(R). \]

(14)

The total leakage current of the resistor-shunted diode string is a function of the bias resistance \(R \) and the common emitter current gain \(\beta \) of each bipolar transistor. The minimum leakage current can be found by equaling the differentiated expression of the total leakage with respect to \(R \) to zero. With this method, the optimized bias resistance to achieve the minimized leakage current can be found from equation (14).

B. Resistor-Shunted Trigger Bipolar ESD Power Clamp

The power-rail ESD clamp circuit with the diode-triggered HBT in a SiGe BiCMOS process had been reported [16], as shown in Fig. 6. However, the leakage (or standby) current of this power-rail ESD clamp circuit is the main concern for low-power or portable applications. To further reduce the
leakage current, the new proposed resistor-shunted trigger bipolar ESD power clamp is shown in Fig. 7 with its equivalent circuit.

The leakage current of the resistor-shunted trigger bipolar ESD power clamp can be derived in the same way. For the SiGe HBT, the base and collector current can be expressed as functions of V_{BE}. In the resistor-shunted trigger bipolar ESD power clamp, the parasitic BJT1 is in the saturation mode while the parasitic BJT2, BJT3, and BJT4 are in the forward-active mode under normal circuit operating conditions. The collector and emitter current of each parasitic bipolar transistor are the same as equations (2) and (3), respectively. The voltage equations in the equivalent circuit of Fig. 7 are given by

\begin{align}
V_{BC1} &= R \times I_1, \\
V_{BE_n} &= V_T \left[\ln \left(I_{En} + 1 \right) - \ln \left(I_S \right) \right], \text{ for } n = 1 \sim 4, \text{ and} \\
V_{DD} - \sum_{n=1}^{4} V_T \left[\ln \left(I_{En} + 1 \right) - \ln \left(I_S \right) \right] &= V_{BE_{_HBT}}.
\end{align}

Equation (17) is different from that of the aforementioned resistor-shunted diode string because the cathode of the resistor-shunted diode string which is connected to ground in the pure resistor-shunted diode string is now connected to the base of HBT in this design. All current of the resistor-shunted diode string will finally flow into the base of HBT and the resistance R_o in this circuit configuration.

The total leakage current along the resistor-shunted trigger bipolar ESD power clamp can be expressed by

\begin{equation}
I_{total \text{ leakage}} = \frac{V_{BE_{_HBT}}}{R_o} + I_B + I_C.
\end{equation}

The base and emitter currents of the SiGe HBT are given by

\begin{align}
I_B &= \frac{qAD_{pe}n_i^2}{W_E N_{de}} e^{V_{BE} / W_T}, \text{ and} \\
I_C &= \frac{qAD_{nb}n_i^2}{W_B N_{ab}} e^{V_{BE} / W_T},
\end{align}

where D_{pe} is the diffusion coefficient of holes in the emitter, N_{de} is the donor concentration in the emitter, W_E is the depth of the emitter, D_{nb} is the diffusion coefficient of electrons in the base, N_{ab} is the acceptor concentration in the base, W_B is the basewidth, n_i is the intrinsic carrier concentration, q is the charge on an electron, and A is the area of the emitter/base junction [17].
The resistance \(R_o \) between the base of SiGe HBT and ground will affect the total leakage current. Thus, there are two design parameters, \(R \) and \(R_o \), in the resistor-shunted trigger bipolar ESD power clamp for minimizing leakage current.

IV. MODIFIED DESIGN OF MODIFIED RESISTOR SHUNTED DIODE STRING AND MODIFIED RESISTOR-SHUNTED TRIGGER BIPOLAR ESD POWER CLAMP

A. Modified Resistor-Shunted Diode String

The cross-sectional view of the new proposed modified resistor-shunted diode string (MR diode string) in a SiGe BiCMOS process is shown in Fig. 8. Similar to the resistor-shunted diode string proposed in last section, the new proposed modified resistor-shunted diode string uses deep N-wells to isolate the P-wells from the common grounded P-substrate. Several extra biases through the biasing resistances are applied to the deep N-wells to reduce the leakage current into substrate. The structure and equivalent circuit of the modified resistor-shunted diode string with parasitic NPN bipolar transistors is shown in Fig. 9.

In the new proposed modified resistor-shunted diode string, each deep N-well is connected to the anode through the bias resistances. The common emitter current gain (\(\beta \)) of the parasitic bipolar transistor whose collector is connected to a bias resistance can be further reduced in this configuration because each bias resistance connects the collector of a parasitic bipolar transistor and the collector of the next one. When current flows through the bias resistance, the voltage drop across it reduces the collector-emitter voltage of the parasitic bipolar transistor. As a result, the common emitter current gains of BJT1, BJT2, and BJT3 can be reduced. When the modified resistor-shunted diode string is used as the power-rail ESD clamp circuit, the anode and \(V_{bias} \) are connected to \(VDD \) and the cathode is grounded.

The total leakage current and the BJT1’s collector voltage are given by

\[
I_{\text{total leakage}} = I_1 + I_3, \quad (21)
\]

\[
I_3 = I_{\text{bias}}, \quad \text{and} \quad (22)
\]

\[
V_1 = V_{bias} - R \times I_1. \quad (23)
\]
In the new proposed modified resistor-shunted diode string, the parasitic BJT1, BJT2, and BJT4 were designed to be operated in the saturation mode while the parasitic BJT3 was designed to be operated in the forward-active mode under normal circuit operating conditions. The following inequality has been demonstrated by the experimental result to validate this design:

\[R \times I_1 < V_{BE1}. \] \hspace{1cm} (24)

The emitter and collector currents of the parasitic bipolar transistors are the same as those in the resistor-shunted diode string, which are given in equations (2) and (3). The current \(I_I \) in Fig. 9 is given by

\[I_I = I_{C1} + I_2, \text{ and} \]

\[I_2 = I_{C2} + I_{C3}. \] \hspace{1cm} (25)

Based on equations (25) and (26), \(I_I \) becomes

\[I_I = I_{C1} + I_{C2} + I_{C3}. \] \hspace{1cm} (27)

The base-emitter voltage \(V_{BE} \) of each parasitic bipolar transistor is given by

\[V_{BE} = V_T \left[\ln \left(I_{E1} + 1 \right) - \ln \left(I_{S} \right) \right], \text{ for } n = 1 \sim 4. \] \hspace{1cm} (28)

The base-collector voltage \(V_{BC} \) of BJT1 is

\[V_{BC1} = R \times I_1. \] \hspace{1cm} (29)

The emitter and collector currents of BJT1 can be obtained with similar derivation as in the resistor-shunted diode string and are given by

\[I_{E1} = \left(\frac{I_S}{\alpha_F} \right) \left[\frac{(I_{E1} + 1)}{I_S} - 1 \right] - I_S \left(e^{\beta L_{I}V_T} - 1 \right), \text{ and} \]

\[I_{C1} = I_S \left[\frac{(I_{E1} + 1)}{I_S} - 1 \right] - \left(\frac{I_S}{\alpha_R} \right) \left(e^{\beta L_{I}V_T} - 1 \right). \] \hspace{1cm} (30)

The base-collector voltage \(V_{BC} \) and base-emitter voltage \(V_{BE} \) of BJT2 are

\[V_{BC2} = R \times I_1 + R \times I_2 - V_{BE1} = R \left(I_1 + I_2 \right) - V_T \ln \left(\frac{I_{E1} + 1}{I_S} \right), \text{ and} \]

\[V_{BE2} = V_T \left[\ln \left(I_{E2} + 1 \right) - \ln \left(I_S \right) \right]. \] \hspace{1cm} (32)

The emitter and collector currents of BJT2 are given by
\[I_{E2} = \left(\frac{I_S}{\alpha_F} \right) \left[\frac{(I_{E2} + 1)}{I_S} \right] - I_S \left(\frac{R(I_t + I_s)}{V_T} \right) - I_S \left(\frac{I_{E1} + 1}{I_{E1}} \right), \quad \text{and} \quad (34) \]

\[I_{C2} = I_S \left[\frac{(I_{E2} + 1)}{I_S} \right] - \left(\frac{I_S}{\alpha_R} \right) \left(\frac{R(I_t + I_s)}{V_T} \right) - I_S \left(\frac{I_{E1} + 1}{I_{E1}} \right). \quad (35) \]

Since BJT3 is in the forward-active mode, its collector current can be derived as

\[I_{C3} = \beta_3 I_{B3} = \beta_3 I_{E2} = \beta_3 \left(\frac{I_S}{\alpha_F} \right) \left[\frac{(I_{E2} + 1)}{I_S} \right] - I_S \left(\frac{R(I_t + I_s)}{V_T} \right) - I_S \left(\frac{I_{E1} + 1}{I_{E1}} \right). \quad (36) \]

With its collector shorted to the emitter, BJT4 is in the saturation mode. The anode is connected to \(VDD \) and cathode is grounded when the modified resistor-shunted diode string is used as the power-rail ESD clamp circuit. In this case, the base-collector voltage \((V_{BC}) \) and base-emitter voltage \((V_{BE}) \) of BJT4 are equal. Therefore, the emitter and collector currents of BJT4 can be simplified as

\[I_{E4} = \left(\frac{I_S}{\alpha_F} \right) \left[\frac{(I_{E4} + 1)}{I_S} \right] - I_S \left(\frac{R(I_t + I_s)}{V_T} \right) - I_S \left(\frac{I_{E1} + 1}{I_{E1}} \right), \quad \text{and} \quad (37) \]

\[I_{C4} = \left(\frac{I_S}{\alpha_R} \right) \left[\frac{(I_{E4} + 1)}{I_S} \right] - I_S \left(\frac{R(I_t + I_s)}{V_T} \right) - I_S \left(\frac{I_{E1} + 1}{I_{E1}} \right). \quad (38) \]

After considering all parasitic bipolar transistors, the total leakage current of the modified resistor-shunted diode string is given by

\[I_{\text{total leakage}} = I_1 + I_3 + I_{C1} + I_{C2} + I_{C3} = I_{E1} + I_{C2} + I_{C3}. \quad (39) \]

According to equations (30), (35), and (36), the total leakage can be calculated. The common emitter current gain \((\beta) \) of the parasitic bipolar transistor is reduced by the bias resistances in the modified resistor-shunted diode string. As a result, the total leakage current of the modified resistor-shunted diode string can be further reduced. Substituting (30), (35), and (36) for \(I_{E1} \), \(I_{C2} \), and \(I_{C3} \) in equation (39) yields
The minimum total leakage current of the modified resistor-shunted diode string can be found by choosing an appropriate bias resistance with the aid of (40). The total leakage current can be further reduced by using more diodes and bias resistances in the modified resistor-shunted diode string.

As shown in equations (14) and (40), the expressions for the leakage current of the two proposed diode strings are functions of bias resistance \(R \), saturation current \(I_S \), common emitter current gain \(\beta \), common base current gain \(\alpha \), emitter current of each bipolar transistor, and the current flows through each resistor. Each aforementioned parameter is also a function of the bias resistor \(R \). Moreover, the aforementioned parameters are dependent to each other. Therefore, it is very complicated to directly derive a simple expression on the optimum resistance, which can minimize the leakage current, by hand calculation. To obtain the optimum resistance, methods such as numerical analysis by computer calculations should be resorted. If the exact parasitic NPN device parameters can be given, the optimal resistance to have a minimal leakage current can be obtained by HSPICE simulation.

B. Modified Resistor-Shunted Trigger Bipolar ESD Power Clamp

The fourth new proposed power-rail ESD clamp circuit is the modified resistor-shunted trigger bipolar ESD power clamp, which is shown in Fig. 10 along with its equivalent circuit. The modified resistor-shunted trigger bipolar ESD power clamp is also believed to have lower leakage current than the conventional diode string. The total leakage current of the modified resistor-shunted trigger bipolar ESD power clamp can be obtained with similar derivation as that in the resistor-shunted trigger bipolar ESD power clamp. The total leakage current along the modified resistor-shunted trigger bipolar ESD power clamp is given by

\[
I_{\text{total leakage}} = \left(\frac{I_S}{\alpha_F}\right) \left[\frac{(I_{E1} + 1)}{I_S} - 1\right] - I_S \left(e^{Rt/V_T} - 1\right)
\]

\[
I_S \left[\frac{(I_{E2} + 1)}{I_S} - 1\right] - I_S \left(e^{\frac{R(I_I+I_S)}{V_T}} - 1\right)
\]

\[
+ \frac{\beta_3}{\alpha_F} \left[\frac{(I_{E2} + 1)}{I_S} - 1\right] - I_S \left(e^{\frac{R(I_I+I_S)}{V_T}} - 1\right)
\]

\[
= f(R)
\]
\[I_{\text{total leakage}} = \frac{V_{BE,HBT}}{R_o} + I_B + I_C, \quad (41) \]

where \(V_{BE,HBT}, I_B, \) and \(I_C \) are expressed in equations (17), (19), and (20), respectively.

The resistance \(R_o \) between the base of SiGe HBT and ground will affect the total leakage current. Similar to the resistor-shunted trigger bipolar ESD power clamp, there are two design parameters, \(R \) and \(R_o \), in the modified resistor-shunted trigger bipolar ESD power clamp for minimizing leakage current.

V. EXPERIMENTAL RESULTS

The four new proposed on-chip power-rail ESD clamp circuits had been fabricated in a 0.18-μm SiGe BiCMOS process. The conventional diode string shown in Fig. 2 had also been fabricated in the same process with the same diode layout dimensions for comparison. During the measurement, the cathodes of the resistor-shunted diode string/modified resistor-shunted diode string and the p-substrate were grounded by two separated channels, so that the cathode current and substrate current can be monitored separately. Each diode in this work has the same device dimension of \(W/L = 40 \, \mu \text{m}/12 \, \mu \text{m} \) in layout pattern. The DC characteristics of the conventional diode string, resistor-shunted diode string, and modified resistor-shunted diode string with different numbers (\(n = 2, 3, \) and 4) of stacked diodes are shown in Figs. 11, 12, and 13, respectively. The \(V_{bias} \) and anode of the modified resistor-shunted diode string were shorted in the DC I-V measurement.

The resistor-shunted diode string and modified resistor-shunted diode string have lower substrate leakage current than that of the conventional diode string, because there are biases applied through the bias resistances into the deep N-well. For the circuit applications with \(VDD \) of 1.8 V, the substrate leakage current in the resistor-shunted diode string (shown in Fig. 12) with four stacked diodes can be two-order of magnitude lower than that of the conventional diode string, as shown in Fig. 11.

The relationship between bias resistance (\(R \)) and the total leakage current through the resistor-shunted diode string and modified resistor-shunted diode string with four stacked diodes (\(n = 4 \)) and the bias condition of \(VDD = V_{bias} = 1.8 \, \text{V} \) at different temperatures is shown in Fig. 14. The total leakage current through the resistor-shunted diode string or modified resistor-shunted diode string (\(n = 4 \)) is increased when the temperature is increased from 75 °C to 125 °C. As shown in Fig. 14, the total...
leakage current of the modified resistor-shunted diode string is about one-order of magnitude lower than that of the resistor-shunted diode string under the condition of the same bias resistance and temperature. The total leakage current of the resistor-shunted diode string and modified resistor-shunted diode string can be minimized by selecting the appropriate bias resistance with the aid of equations (14) and (40), respectively. From the measured results of the test chip fabricated in a 0.18-μm SiGe BiCMOS process, the resistor-shunted diode string and modified resistor-shunted diode string with four stacked diodes have the minimized leakage current at 125 °C by using the bias resistance of 10 kΩ and 20 kΩ, respectively. The relationships between voltage across the conventional diode string, resistor-shunted diode string, and modified resistor-shunted diode string with four stacked diodes and their total leakage current at 125 °C are compared in Fig. 15. The V_{bias} in the modified resistor-shunted diode string is 1.8 V in this measurement. All bias resistances used in this comparison is 10 kΩ for the resistor-shunted diode string and modified resistor-shunted diode string. The modified resistor-shunted diode string has the lowest leakage current, while the conventional diode string has the highest leakage current. As illustrated in Fig. 15, the total leakage current of the modified resistor-shunted diode string is about one-order of magnitude lower than that of the conventional diode string in the voltage range from 0.1 V to 1.9 V.

With a bias resistance of 10 kΩ, the ESD robustness of the conventional diode string, resistor-shunted diode string, and modified resistor-shunted diode string with different numbers of stacked diodes has been investigated by using the transmission-line-pulse (TLP) generator with a pulse width of 100 ns. The TLP-measured I-V characteristics of the conventional diode string, resistor-shunted diode string, and modified resistor-shunted diode string with different numbers (n = 1, 2, 3, and 4) of stacked diodes are shown in Figs. 16, 17, and 18, respectively. The dependence of the secondary breakdown current (I_{t2}) of the conventional diode string, resistor-shunted diode string, and modified resistor-shunted diode string on the number (n) of stacked diodes is shown in Fig. 19. The V_{bias} and anode of the modified resistor-shunted diode string were shorted together in the I_{t2} measurement. The I_{t2} of the resistor-shunted diode string and modified resistor-shunted diode string are larger than that of the conventional diode string when the number of stacked diodes exceeds two. This implies that the new proposed resistor-shunted diode string and modified resistor-shunted diode string have not only lower leakage current but also higher ESD robustness, as compared to the conventional diode string. With an I_{t2} of greater than 4 A, the new proposed resistor-shunted diode string and modified resistor-shunted diode string with four stacked diodes can sustain the human-body-model ESD stress of ~ 6 kV.
As shown in Fig. 19, the It2 of the resistor-shunted diode string and modified resistor-shunted diode string do not decrease as the number of stacked diodes increases. Consequently, the number of stacked diodes in the resistor-shunted diode string and modified resistor-shunted diode string can be reasonably increased to get a higher blocking voltage without degradation in ESD robustness.

A comparison of the total leakage current among the SiGe HBT triggered by the conventional diode string, resistor-shunted diode string, and modified resistor-shunted diode string with four stacked diodes at 125 °C under different R_o resistances is shown in Fig. 20, where all the bias resistances are 10 kΩ and VDD is 1.8 V. As shown in Fig. 20, The total leakage current of the new proposed resistor-shunted trigger bipolar ESD power clamp and modified resistor-shunted trigger bipolar ESD power clamp is about two-order of magnitude lower than that of the HBT triggered by the conventional diode string with the same number of stacked diodes and the same HBT device dimension.

As compared with the conventional string, the leakage current is reduced by using the resistor-shunted diode string. According to Fig. 5, the potential at the collector electrodes of the four parasitic BJTs are equal. Each base in the parasitic BJT is connected to the emitter of the preceding parasitic BJT, and the base of the parasitic BJT1 is connected to anode. As a result, the parasitic BJT1 is in the saturation mode while the parasitic BJT2, BJT3, BJT4 are in the forward-active mode under normal circuit operating conditions. Therefore, the BJT current will be amplified by a factor of $\beta+1$ through each forward-active parasitic BJT. Consequently the leakage current increases as the number of forward-active parasitic BJTs increases. For the purpose of decreasing the number of forward-active parasitic BJTs, the modified design of the modified resistor-shunted diode string is proposed and shown in Fig. 9. The common emitter current gain (β) of the parasitic bipolar transistor whose collector is connected to a bias resistance can be further reduced in this configuration, because voltage drop across the bias resistance reduces the collector-emitter voltage of the parasitic bipolar transistor. In the modified resistor-shunted diode string, the parasitic BJT1, BJT2, and BJT4 are in the saturation mode while only the parasitic BJT3 is in the forward-active mode under normal circuit operating conditions. With only one forward-active parasitic BJT, the leakage current is minimized by the new proposed modified resistor-shunted diode string.

When the SiGe HBT is applied as the ESD clamp device, the HBT should be taken into consideration to evaluate the leakage current. Because the leakage current of the resistor-shunted diode string is not minimized, the SiGe HBT forms the fifth base-emitter junction in series with the existing four base-emitter junction between VDD and VSS. Thus the leakage current of the resistor-shunted
diode string can be further reduced by using the resistor-shunted trigger bipolar ESD power clamp. On the other hand, since the leakage current of the modified resistor-shunted diode string is already minimized, applying the SiGe HBT can not further reduce the leakage current significantly. Therefore, as shown in Fig. 15 and Fig. 20, the leakage current of the modified resistor-shunted diode string, resistor-shunted trigger bipolar ESD power clamp, and modified resistor-shunted trigger bipolar ESD power clamp is almost the same, around 1.5 ~ 2 nA.

The TLP-measured I-V curves of the SiGe HBT triggered by the conventional diode string, resistor-shunted trigger bipolar ESD power clamp, and modified resistor-shunted trigger bipolar ESD power clamp with four stacked diodes and $R = R_o = 10 \text{ k}\Omega$ are compared in Fig. 21, where the current is normalized to the emitter area of the SiGe HBT. As shown in Fig. 21, the modified resistor-shunted trigger bipolar ESD power clamp has the lowest turn-on resistance, while the HBT triggered by the conventional diode string has the highest turn-on resistance. ESD clamp device with lower turn-on resistance would have lower voltage across itself during ESD stress. Thus, the voltage on the input node of the circuit to be protected would be lower during ESD stress. Accordingly, the modified resistor-shunted trigger bipolar ESD power clamp can sustain the highest It2 per unit emitter area, which implies to have the highest ESD robustness among these three designs. To sustain a higher ESD level, the SiGe HBT with a larger device dimension should be used in power-rail ESD clamp circuits.

VI. COMPARISON WITH PREVIOUSLY REPORTED DIODE STRINGS

A recently reported power-rail ESD clamp circuit designed with diode string for mixed-voltage applications is shown in Fig. 22 [12]. According to Fig. 22, the power-rail ESD clamp circuit consists of a two-stage Darlington clamp network using a SiGe HBT trigger with base open and SiGe HBT clamp element. In a power-rail ESD clamp circuit, the clamp device must have a high breakdown voltage to sustain the voltage between VDD and VSS, while the trigger device should have a low breakdown voltage to immediately initiate the base current into the clamp device before the voltage across the power-rail ESD clamp circuit damages the core circuits. Thus, the trigger HBT with low breakdown voltage and high cutoff frequency (f_T) and the ESD clamp HBT with high breakdown voltage and low cutoff frequency (f_T) are used in this power-rail ESD clamp circuit.
When the collector-to-emitter voltage of the HBT is below the breakdown voltage, no current flows through the trigger HBT. Therefore, with base grounded, the clamp HBT is not turned on under normal circuit operating conditions. Under ESD condition, the voltage on V_{DD} exceeds the collector-to-emitter breakdown voltage (BV_{CEO}), and current flows into the base of the ESD clamp HBT to discharge ESD current from V_{DD} to V_{SS}. The resistor $R_{ballast}$ is used for resistor ballasting to improve ESD robustness. The trigger voltage of the power-rail ESD clamp circuit can be varied by changing the number of series varactors.

Another ESD protection circuit designed with diode string for mixed-voltage interface, which is referred to as the snubber-clamped diode string, is shown in Fig. 23 [13]. In this mixed-voltage interface ESD protection circuit, the diode string is placed between the I/O pad and V_{DD} to protect the 3.3-V/5-V mixed-voltage interface circuit. The diode string forms a multi-stage BJT amplifier in a Darlington configuration. The bipolar base current is amplified by each successive stage when each stage is in the forward-active mode. To break the Darlington effect of amplifying the leakage current, three additional snubber diodes are placed on the base electrodes of the parasitic BJTs. With the snubber diodes, the base voltage of the parasitic BJT is clamped and the leakage current amplification is limited. Any elements, such as resistors, p-channel MOSFETs, or diodes, which can prevent a forward-active condition of the parasitic BJT, can be used to limit the Darlington amplification. The snubber-clamped diode string, resistor-shunted diode string, and modified resistor-shunted diode string proposed in this work utilize the same concept to reduce the leakage current, which is preventing the parasitic BJTs of the diode string from being in the forward-active mode to amplify the leakage current. In the snubber-clamped diode string, the base potential is boosted by the snubber diodes, while in the resistor-shunted diode string and modified resistor-shunted diode string the collector potential is lowered by the voltage drop of the bias resistor.

VII. CONCLUSION

Four new designs to minimize the leakage current of the power-rail ESD clamp circuit realized by diode string for RF circuits had been proposed and verified in a 0.18-μm SiGe BiCMOS process. With an additional extra bias circuit to supply current into the N-well of diodes in the resistor-shunted diode string, the overall leakage current of the resistor-shunted diode string can be reduced. The leakage
current can be further reduced and minimized by using the new proposed modified resistor-shunted diode string, which is introduced by the similar idea. The design equations to minimize the leakage current in the resistor-shunted diode string and modified resistor-shunted diode string have been also derived in this work. By selecting the appropriate bias resistance, the total leakage current of the resistor-shunted diode string and modified resistor-shunted diode string can be kept much smaller than that of the conventional diode string. This makes the resistor-shunted diode string and modified resistor-shunted diode string more promising as the on-chip power-rail ESD clamp circuit. Moreover, the resistor-shunted diode string and modified resistor-shunted diode string have higher ESD robustness than the conventional diode string when the number of stacked diodes exceeds two. Therefore, the new proposed resistor-shunted diode string, modified resistor-shunted diode string, resistor-shunted trigger bipolar ESD power clamp, and modified resistor-shunted trigger bipolar ESD power clamp are very suitable for power-rail ESD clamp circuits in cooperation with the small input ESD diodes to achieve high ESD robustness for RF circuits in the SiGe BiCMOS technology.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the support of wafer fabrication in a 0.18-μm SiGe BiCMOS process from TSMC. Especially, thanks to Dr. T.-C. Ong, Mr. J.-H. Lee, and Mr. Y.-H. Wu in TSMC, Hsinchu, Taiwan. The authors would want to thank the reviewers for their valuable suggestions and comments to improve this publication.
REFERENCES

Fig. 1 The typical on-chip RF ESD protection scheme with co-designed input ESD diodes and the power-rail ESD clamp circuit. The diode string has been applied in the power-rail ESD clamp circuit.

Fig. 2 The cross-sectional view of the conventional diode string with four stacked diodes in CMOS technology.
Fig. 3 The cross-sectional view of the four-stage diode string and its parasitic base-emitter tied PNP bipolar transistors in a triple-well CMOS process.

Fig. 4 The cross-sectional view of the new proposed resistor-shunted diode string with four stacked diodes.
Fig. 5 The structure and equivalent circuit of the new proposed resistor-shunted diode string with 4 stacked diodes. When the resistor-shunted diode string is used as the power-rail ESD clamp circuit, the anode is connected to V_{DD} and the cathode is grounded.

Fig. 6 The power-rail ESD clamp circuit with the diode-triggered HBT in a SiGe BiCMOS process [16].
Fig. 7 The new proposed resistor-shunted trigger bipolar ESD power clamp and its corresponding equivalent circuit.

Fig. 8 The cross-sectional view of the new proposed modified resistor-shunted diode string with four stacked diodes.
Fig. 9 The equivalent circuit of the modified resistor-shunted diode string with 4 stacked diodes in a SiGe BiCMOS process. When the modified resistor-shunted diode string is used as the power-rail ESD clamp circuit, the anode and V_{bias} are connected to VDD and the cathode is grounded.

Fig. 10 The new proposed modified resistor-shunted trigger bipolar ESD power clamp and its equivalent circuit.
Fig. 11 The DC I-V characteristics of the conventional diode string with different numbers \(n = 2, 3, \) and 4) of stacked diodes under the temperature of 25 °C.

Fig. 12 The DC I-V characteristics of the resistor-shunted diode string with different numbers \(n = 2, 3, \) and 4) of stacked diodes under the temperature of 25 °C and the bias resistance of 10 kΩ.
Fig. 13 The DC I-V characteristics of the modified resistor-shunted diode string with different numbers (n = 2, 3, and 4) of stacked diodes under the temperature of 25 °C and the bias resistance of 10 kΩ. The V_{bias} and anode of the modified resistor-shunted diode string were shorted in DC I-V measurement.

Fig. 14 The relationship between bias resistance (R) and total leakage current of resistor-shunted diode string (RS diode string) and modified resistor-shunted diode string (MR diode string) with four stacked diodes and the bias condition of $VDD = V_{bias} = 1.8$ V, which were measured at the temperatures of 75 °C and 125 °C, respectively.
Fig. 15 Comparison on total leakage currents of the conventional diode string, resistor-shunted diode string (RS diode string), and modified resistor-shunted diode string (MR diode string) with four stacked diodes ($n = 4$) and $R = 10 \, \text{k}\Omega$ at 125°C.

Fig. 16 The TLP-measured I-V characteristics of the conventional diode string with different numbers ($n = 1$, 2, 3, and 4) of stacked diodes.
Fig. 17 The TLP-measured I-V characteristics of the resistor-shunted diode string with different numbers ($n = 1, 2, 3, \text{ and } 4$) of stacked diodes.

Fig. 18 The TLP-measured I-V characteristics of the modified resistor-shunted diode string with different numbers ($n = 1, 2, 3, \text{ and } 4$) of stacked diodes.
Fig. 19. The dependence of secondary breakdown current (I_{t2}) of the conventional diode string, resistor-shunted diode string (RS diode string), and modified resistor-shunted diode string (MR diode string) on the number of stacked diodes. The V_{bias} and anode of modified resistor-shunted diode string (MR diode string) were shorted in the I_{t2} measurement.

Fig. 20. Comparison on the total leakage currents of the SiGe HBT triggered by the conventional diode string, resistor-shunted trigger bipolar ESD power clamp, and modified resistor-shunted trigger bipolar ESD power clamp under different R_o resistances. All the bias resistances are 10 kΩ with four stacked diodes, bias condition of $VDD = 1.8$ V, and temperature of 125 °C.
Fig. 21. The TLP-measured I-V curves of the SiGe HBT triggered by the conventional diode string, resistor-shunted trigger bipolar ESD power clamp, and modified resistor-shunted trigger bipolar ESD power clamp with four stacked diodes and $R = R_o = 10 \, \text{k}\Omega$.

Fig. 22 The power-rail ESD clamp circuit designed with diode string for mixed-voltage applications [12].
Fig. 23 The ESD protection circuit designed with diode string for mixed-voltage interface [13].