A 56–67 GHz Low-Noise Amplifier with 5.1-dB NF and 2.5-kV HBM
ESD Protection in 65-nm CMOS

Ming-Hsien Tsai, Hsieh-Hung Hsieh, Chun-Yu Lin*, Li-Wei Chu*, Shawn S. H. Hsu**, Jun-De Jin,
Tzu-Jin Yeh, Chewn-Pu Jou, Fu-Lung Hsueh, and Ming-Dou Ker*

Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan
*National Chiao-Tung University, Hsinchu, Taiwan
**National Tsing-Hua University, Hsinchu, Taiwan

Abstract—This paper presents a V-band low-noise amplifier with
high RF performance and ESD robustness. An inductor-
triggered silicon-controlled rectifier (SCR) assisted with both a
PMOS and an inductor is proposed to enhance the ESD
robustness and minimize the impact of the ESD protection block
on the millimeter-wave LNA. The initial-on PMOS improves the
turn-on speed and the inductor resonates with the parasitic
capacitance, respectively. Also, a 3-stage wideband V-band LNA
is designed by using the gate inductor in the common-gate stage
of the cascode topology as gain peaking to compensate the roll-off
at high frequencies for bandwidth extension. The measured results demonstrate a 2.5-kV HBM ESD protection level with a
minimum noise figure (NF) of 5.1 dB and a peak gain of 22 dB,
also a 3-dB bandwidth of 56–67 GHz can be achieved under a
power consumption of only 23 mW.

Index Terms—CMOS, electrostatic discharge (ESD), low-noise
amplifier (LNA), and millimeter wave (mm-Wave).

I. INTRODUCTION

The millimeter-wave wireless communication at around 60
GHz has attracted tremendous interests in both academia and
industries. Owing to the rapid progress in technology, CMOS
shows the capability of high f_t and f_{MAX} under low power
operation, and becomes the most suitable candidate for
realizing a fully-integrated 60 GHz transceiver [1]-[4]. However, the reduced gate oxide thickness and hence lowered
gate oxide breakdown voltage make the device more
vulnerable to electrostatic discharge (ESD) [5]. The ESD protection level is in general proportional to the capacitive
parasitics if using the conventional ESD devices such as
diodes and silicon-controlled rectifier (SCR) [6]-[7]. These
pose a significant challenge of designing robust on-chip ESD
protection for a 60 GHz transceiver in advance CMOS
technology.

In this paper, an inductor-triggered SCR (LTSCR) with the
target circuit consists of inductor, PMOS, and RC-based ESD
detection circuit, is proposed to reduce the trigger voltage and
improve the turn-on efficiency of LTSCR. The series inductor
can not only provide a detection path between the RC-based
detection circuit and the initial-on PMOS, but also serve as a
component to resonate the parasitic capacitance introduced by
the SCR device. As a result, the signal loss can be reduced in a
wide bandwidth. By co-optimization of ESD protection and
RF characteristics, the proposed ESD-protected LNA
demonstrates an HBM ESD level of 2.5 kV, a minimum NF of
5.1 dB, a peak power gain of 22 dB, and a 3-dB bandwidth of
56–67 GHz, under a power consumption of only 23 mW in
65-nm CMOS technology.

II. CIRCUIT DESIGN

A. Design of Inductor-Triggered SCR ESD Protection

The inductor-triggered SCR ESD protection circuit is
shown in Fig. 1, which consists of an SCR device, an inductor
(L_{ESD}), a PMOS transistor (M_T), and a RC-based ESD
detection circuit embedded in the power-rail ESD clamp. The
inductor-triggered SCR ESD protection circuit is employed in
conjunction with the ESD clamp and the diode D_N to form a
complete ESD network for the four different ESD testing
modes, i.e. positive-to-V_{DD} (PD), positive-to-V_{SS} (PS),
negative-to-V_{DD} (ND), and negative-to-V_{SS} (NS). The inductor
provides a signal path between the RF IN pad and the trigger
terminal (node T as shown in Fig. 1) of the SCR device under
ESD stress. The PMOS transistor at the trigger path, which is
controlled by the ESD detection circuit, is also turned on when
ESD stress occurs. When the trigger signal passes from the
RF IN pad to the trigger terminal of the SCR device, the SCR
device can be quickly turned on to discharge the ESD current.
The RC-based ESD detection circuit is used to distinguish the
ESD-stress conditions from the normal RF operation.

Therefore, under power-on condition, the PMOS transistor is
turned off to block the steady leakage current path from the
RF IN pad to the trigger port of the SCR device. Under normal
RF operation, the inductor in series with the PMOS is used to
compensate the parasitic capacitance of the SCR device (C_{ESD}).

The power-rail ESD clamp circuit consisting of the RC-
inverter-triggered NMOS is used to provide ESD current paths
between V_{DD} and V_{SS}. The R (~10 kΩ) and C (~10 pF) with
the time constant of 0.1 μs ~ 1 μs can prevent the false
triggering of the ESD block during normal RF operation. In
normal RF operation, the node between R_C and M_C (MOS
capacitor) is charged to the high potential (V_{DD}). During ESD
stress zapping, the ESD voltage at V_{DD} has the fast rise time in
the order of ~10 ns. With the RC delay, the power-rail ESD
clamp circuit is turned on to provide an ESD current path from
V_{DD} to V_{SS}. The power-rail ESD clamp circuit is placed

747
between VDD and VSS, and the parasitic induced by the power-rail ESD clamp is not that critical (both nodes connected to the AC ground). Note that the RC-based detection circuit can be embedded in the power-rail ESD clamp circuit to control the PMOS in the inductor-triggered SCR simultaneously, which is also helpful for reducing the chip size.

In the design of inductor-triggered SCR, the optimization of the inductor (L_{ESD}), PMOS transistor (M_T), SCR device, and diode (D_N) are mainly determined by the consideration of its impact on RF performance. Since the sizes of SCR and D_N depend on the required ESD robustness, a considerable amount of parasitic capacitance (C_{ESD}) cannot be avoided, which could seriously degrade the LNA performance. An inductor (L_{eq}) is introduced in parallel with the C_{ESD} to minimize the effect of the parasitic capacitance at the frequency of interest. The resonate frequency can be expressed as

\[\omega_0 = \frac{1}{\sqrt{L_{eq} C_{ESD}}} \]

(1)

where L_{eq} consists of the equivalent inductances of the series L_{ESD} and M_T,

\[L_{eq} = L_{ESD} - \frac{1}{\omega_0^2 C_{MT}} \]

(2)

and C_{MT} can be expressed as

\[C_{MT} = C_{gs} + C_{gb} + C_{db} \]

(3)

where C_{gs}, C_{gb}, and C_{db} are the gate-to-source capacitance, gate-to-body capacitance, and the drain-to-body capacitance of the PMOS transistor (M_T), respectively. Once the sizes of SCR and D_N have been chosen, the sizes of L_{ESD} and M_T can be designed to optimize the cell area and RF performances.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. RF Measurements

The proposed V-band ESD-protected low-noise amplifier is with a chip area of 1.52×1.28 mm² including the all testing pads, fabricated in 65-nm CMOS process. The RF characteristics of circuits were measured on-wafer. The LNAs operate from a 1.0 V supply and draw a current of 23 mA with an associate power consumption of 23 mW. Fig. 3 shows the measured S_{21} of the LNAs with a peak power gain of 22 dB at 64 GHz and a 3-dB bandwidth of 56–67 GHz, indicating successful gate inductor peaking for bandwidth extension. Fig. 3 also shows the measured input and output return losses (S_{11} and S_{22}) of the LNAs. The maximum input and output return losses are 16.8 and 11.6 dB, respectively, in the frequency range of 56–67 GHz. The minimum measured NF is 5.1 dB at 61.5 GHz. In addition, the linearity of the LNA was characterized by the two-tone inter-modulation distortion test. The measured P_{1dB} for the proposed ESD-protected LNA is −20 dBm.
B. ESD Testing Results

The transmission line pulse (TLP) measurement technique is widely used to provide precise, high-voltage and high-current waveforms for ESD characterization. The ESD test was performed on-wafer by dc probes using a Barth 4002 TLP test system. The pulse of a 10-ns rise time with a 100-ns pulse width was used to simulate the HBM ESD condition. The relation between the TLP second breakdown current (I_{T2}) and the HBM ESD level (V_{HBM}) can be approximated as $V_{HBM} (V) \sim I_{T2} (A) \cdot R_{HBM} (\Omega)$, where $R_{HBM} (= 1.5 \text{k}\Omega)$ is the equivalent resistance of human body resistance. The dc leakage current measurement was performed after each pulse to monitor if the device is damaged. The ESD failure level of the circuit was determined by sudden dc leakage current increase. Fig. 4 shows the test results of different ESD testing combinations (PD, PS, ND, and NS) for the proposed ESD-protected LNA. In the PD mode, the ESD bypass current enters from the RF input pad, flows through diode path of SCR to V_{DD}. A sudden increase of the leakage current suggests that a second breakdown current I_{T2} up to 1.9 A, corresponding to a 2.8-kV HBM ESD level. In the PS mode, the ESD current path also enters from the RF input pad, flows through SCR path to V_{SS}. A second breakdown current I_{T2} of 1.75 A can be achieved, corresponding to a 2.6-kV HBM ESD level. In the NS mode, the ESD current goes through D_N diode, exhibiting a second breakdown current I_{T2} up to 1.7 A, corresponding to a 2.5-kV HBM ESD level. In the ND mode, the TLP current curve shows an I_{T2} of 1.7 A, corresponding to a 2.5-kV HBM ESD level, and an additional offset voltage and slightly higher on-resistance compared with the NS mode due to the power clamp. Table I compares this work with other previously published RF LNAs with/without ESD protection in the similar frequency range. Compared with the prior arts, this work demonstrates a V-band LNA showing a lowest NF of 5.1 dB, a highest power gain of 22 dB, a large 3-dB bandwidth of 11 GHz, and with a 2.5-kV HBM ESD protection in 65 nm CMOS under the low power consumption of 23 mW.

IV. CONCLUSION

In this paper, we demonstrated a high performance ESD-protected V-band LNA fabricated in 65-nm CMOS technology. With the inductor-triggered SCR ESD technique, the series inductor can not only provide a detection path between the RC-based detection circuit and the initial-on PMOS, but also resonate with the parasitic capacitance introduced by the SCR device to minimize the impact of ESD block on the LNA core circuit. The proposed LNA demonstrated a 2.5 kV HBM ESD level, a minimum NF of 5.1 dB, a peak power gain of 22 dB, a 3-dB bandwidth of 56–67 GHz, under a power consumption of only 23 mW.

ACKNOWLEDGMENT

This work was supported by National Science Council, Taiwan. The authors would like to thank Dr. Guo-Wei Huang for the RF measurements supported by National Nano Device Laboratories.

REFERENCES